BK BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS SENIOR SECONDARY CO-ED DAY CUM BOYS' RESIDENTIAL SCHOOL

MID-TERM EXAMINATION 2024-25

MARKING KEY MATHEMATICS (041)

FOR EDUCATION

Class: X Duration: 3 Hrs Max. Marks: 80 Date:21/09/24 Name: Exam RNo: General Instructions: 1. This Question Paper has 5 Sections A, B, C, D and E. 2. Section A has 20 MCQs carrying 1 mark each 3. Section B has 5 questions carrying 02 marks each. 4. Section C has 6 questions carrying 03 marks each. 5. Section D has 4 questions carrying 05 marks each. 6. Section E has 3 case-based integrated units of assessment (04 marks each) with sub-parts. 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks have been provided. An internal choice has been provided in the 2marks questions of Section E 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated. **SECTION A** 1. The HCF of the two numbers is 27 and their LCM is 162. If one of the numbers is 1m 54, what is the other number? (a) 36 (b) 45 (C) 9 (d) 81 2. Π (pie) is 1m (a) an integer (b) a rational (d) none of these (C) an irrational number number 3. The distance of the point (-3,4) from the x-axis is 1m (a) 3 (b) -3 (C) 4 (d) 5If A (1,3), B (-1,2), C (2,5) and D(x,4) are the vertices of a parallelogram ABCD 4. 1m then the value of x is (a) 3 (C) 0(d) 3/2**(b)** 4 The pair of equations 2x + 3y = 5 and 4x + 6y = 15 has 5. 1m (a) a unique (b) exactly two (C) infinitely (d) no solutions many solutions solution solutions If a pair of linear equations is inconsistent then the graph lines will be 1m 6. (b) always (C) always (d) intersecting or (a) parallel coincident intersecting coincident. If one root of the equation $2x^2 + ax + 6 = 0$ is 2 the a is 7. 1m(a) 7 (b) -7 (C) 7/2 (d) - 7/2The sum of roots of $x^2 - 6x + 2 = 0$ is 8. 1m (a) 2 (b) -2(d) -6 (C) 6 9 The sum of the first 20 odd natural numbers is 1m(a) 100 (b) 210 (C) 400 (d) 420 10. What is the common difference of an A.P. where $a_{18} - a_{14} = 32$? 1m (b) - 8(C) 4(a) 8 (d) -4 11. If sin $\alpha = \frac{1}{2}$ then cot $\alpha = ?$ 1m

CL_X_MID_TERM_MATHS_MS_Page 1 | 11

	(a) 1/√3	(b) √3	(C) √3/2	(d) 1				
12.	If $\cos \alpha = 4/5$	then $\tan \alpha = ?$			1m			
	(a) 4/3	(b) 3/5	(C) 3/4	(d) none of these				
13	If the height o	of the vertical pole is	s equal to the length o	f its shadow on the ground,	1m			
	the angle of elevation of the sun is							
	(a) 0^0	(b) 30°	(C) 45°	(d) 60°				
14	If the length o	of the shadow of a to	ower is $\sqrt{3}$ times its he	eight then the angle of	1m			
	elevation of th	ne sun is						
	(a) 0^0	(b) 45 ⁰	(C) 30°	(d) 60°				
15	The area of a	sector of a circle w	ith a radius of 6 cm if	the angle of the sector is 60°.	1m			
	(a) 142/7	(b) 152/7	(C) 132/7	(d) none of these				
16	In a circle of 1	adius 21 cm, an arc	subtends an angle of	60° at the centre. The length	1m			
	of the arc is							
	(a) 21 cm	(b) 14 cm	(C) 22 cm	(d) none of these				
17	The mode and	The mode and mean are given by 7 and 8, respectively. Then the median is:						
	(a) 2/23	(b) 3/23	(C) 23/3	(d) none of these				
18	The class interval of a given observation is 10 to 15, then the class mark for this interval will be:							
	(a) 10	(b) 15	(C) 12.5	(d) none of these				
19	 Assertion (A):- If the value of mode and mean is 60 and 66 respectively, then the value of median is 64. Reason (R):- Median = mode + 2 mean. (a) Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A). (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A). (c) Assertion (A) is true and Reason (R) is false. (d) Assertion (A) is false and Reason (R) is true. 							
20	Assertion (A) Reason (R):-	:- The point (a,0) lie	es on the y-axis.	ne form (0.a).	1m			

(a) Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A).

(b) Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).

(c) Assertion (A) is true and Reason (R) is false.

(d) Assertion (A) is false and Reason (R) is true.

SECTION B Prove that $2 + 3\sqrt{5}$ is an irrational number. 21

2m

Let us assume, to the contrary, that $2 + 3\sqrt{5}$ is rational. A:-So that we can find integers a and b (b \neq 0). Such that $2 + 3\sqrt{5} = \frac{a}{b}$, where a and b are coprime. Rearranging the above equation, we get

$$3\sqrt{5} = \frac{a}{b} - 2$$

$$3\sqrt{5} = \frac{a-2b}{b}$$

$$\sqrt{5} = \frac{a-2b}{3b} = \frac{a}{3b} - \frac{2b}{3b}$$

$$\sqrt{5} = \frac{a}{3b} - \frac{2}{3}$$
Im

Since a and b are integers, we get $\frac{a}{3b}-\frac{2}{3}$ is rational and so $\sqrt{5}$ is rational. But this contradicts the fact that $\sqrt{5}$ is irrational. So, we conclude that $2 + 3\sqrt{5}$ is irrational.

OR Prove that $\sqrt{5}$ is irrational. 2m Let us assume, to the contrary, that $\sqrt{5}$ is rational. A:-So, we can find integers p and q (q \neq 0), such that $\sqrt{5} = \frac{p}{q}$, where p and q are coprime. Squaring both sides, we get $5 = \frac{p^2}{q^2}$ $\Rightarrow 5q^2 = p^2 \dots (i)$ \Rightarrow 5 divides p² 1m 5 divides p So, let p = 5rPutting the value of p in (i), we get $5q^2 = (5r)^2$ $\Rightarrow 5q^2 = 25r^2$ $\Rightarrow q^2 = 5r^2$ \Rightarrow 5 divides q² 5 divides q So, p and q have atleast 5 as a common factor. But this contradicts the fact that p and q have no common factor. 1m So, our assumption is wrong, is irrational. 22 For what value of k, the pair of equations 4x - 3y = 9, 2x + ky = 11 has no solution? 2m A۰-We have, 4x - 3y = 9 and 2x + ky = 11 $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \text{ (No solution)}$ $\frac{4}{2} = \frac{-3}{k} \neq \frac{9}{11} \implies 2 = \frac{-3}{k}$ 1m 2k = -3 \therefore $k = \frac{-3}{2}$ 1m Solve the following quadratic equation for x: $4\sqrt{3x^2 + 5x - 2\sqrt{3}} = 0$ 23 2m A:-Solution: $4\sqrt{3}x^2 + 5x - 2\sqrt{3} = 0$

$$4\sqrt{3}x^{2} + 8x - 3x - 2\sqrt{3} = 0$$

$$4x(\sqrt{3}x + 2) - \sqrt{3}(\sqrt{3}x + 2) = 0$$

$$(\sqrt{3}x + 2)(4x - \sqrt{3}) = 0$$

$$\sqrt{3}x + 2 = 0 \text{ or } 4x - \sqrt{3} = 0$$

$$\sqrt{3}x + 2 = 0 \text{ or } 4x - \sqrt{3} = 0$$

$$x = \frac{-2\sqrt{3}}{3} \text{ or } x = \frac{\sqrt{3}}{4}$$

$$\therefore x = \frac{-2}{\sqrt{3}}$$
 or $x = \frac{\sqrt{3}}{4}$ 1m

24 Which term of the progression $4, 9, 14, 19, \dots$ is 109? 2m

1m

1m

CL X MID TERM MATHS MS Page 3 | 11

Solution: A:-

A:-

Here, d = 9 -4 = 14 -9 = 19 - 14 = 5 : Difference between consecutive terms is constant. Hence it is an A.P. Given: First term, a = 4, d = 5, $a_n = 109$ (Let) \therefore a_n = a + (n - 1) d ... [General term of A.P. $\therefore 109 = 4 + (n - 1)5$ $\Rightarrow 109 - 4 = (n - 1) 5$ $\Rightarrow 105 = 5(n - 1) \Rightarrow n - 1 = \frac{105}{5} = 21$ $\Rightarrow n = 21 + 1 = 22 \therefore 109 \text{ is the } 22^{nd} \text{ term}$

1m

1m

1m

	OI	R		
		~	~	

on		
Find the 9th term from the end (towards the first term) of the A.P.	5,9,13,, 185.	2m
Here First term, a = 5		

Common difference, d = 9 – 5 = 4
Last term, 1 = 185
$$n^{th}$$
 term from the end = I – (n – 1)d

 9^{th} term from the end = 185 - (9 - 1)4= 185 - 8 × 4 = 185 - 32 = 153

25 The circumference of a circle is 22 cm. Calculate the area of its quadrant. 2m A:-Solution:

Circumference of a circle = $22 \text{ cm} 2\pi r = 22 \text{ cm}$

$$2 \times \frac{22}{7} \times r = 22 \text{ cm}$$

$$r = \frac{22 \times 7}{22 \times 2} = \frac{7}{2} \text{ cm}$$
1m

$$\therefore \quad \text{Area of quadrant} = \frac{1}{4}\pi r^2$$

SECTION C

26 Find the ratio in which the y-axis divides the line segment joining the points 3m A (5, -6), and B (-1, -4). Also, find the coordinates of the point of division. (5,-6) = m (0,y) = n (-1,-4)A:

$$\frac{1}{A} = \begin{pmatrix} 0, 0 \end{pmatrix} + \begin{pmatrix} 0, 0 \end{pmatrix} +$$

Let AC: CB = m : n = k : 1. 1m Coordinates of C = $\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$

> $= \left(\frac{-k+5}{k+1}, \frac{-4k-6}{k+1}\right)$...(i) 1m

Point C lies on y-axis
$$\therefore \frac{-m+5}{m+1} = 0$$

 $\Rightarrow -k+5=0$ or $k=5$
 \therefore Required ratio = $k: 1 = 5: 1$

From (i), required point C,

$$\Rightarrow \quad \left(\frac{-5+5}{5+1}, \frac{-20-6}{5+1}\right) = \left(0, \frac{-26}{6}\right) = \left(0, \frac{-13}{3}\right) \qquad 1 \text{ m}$$

27 Solve the following pair of equations:

$$49x + 51y = 499$$

 $51x + 49y = 501$
3m

A:-
LH.S. =
$$\frac{\sin\theta - 2\sin^3\theta}{2\cos^3\theta - \cos\theta}$$

= $\frac{\sin\theta (1 - 2\sin^2\theta)}{\cos\theta(2\cos^2\theta - 1)}$
= $\frac{\sin\theta (1 - 2\sin^2\theta)}{\cos\theta(2(1 - \sin^2\theta) - 1)}$...[:: $\cos^2\theta = 1 - \sin^2\theta$ 2m
= $\frac{\tan\theta (1 - 2\sin^2\theta)}{(2 - 2\sin^2\theta - 1)} = \frac{\tan\theta (1 - 2\sin^2\theta)}{(1 - 2\sin^2\theta)}$
= $\tan\theta = \text{R.H.S.}$ (Hence proved) 1m

30 In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. Find: 3m
(i) the length of the arc
(ii) area of the sector formed by the arc.

A:- Solution: (i) Length of the arc: $r = 21 \text{ cm}, \theta = 60^{\circ}$ Length of the arc

$$= \frac{\theta}{360} (2\pi r) = \frac{\theta}{180} \pi r$$

$$= \frac{60}{180} \times \frac{22}{7} \times 21 = 22 \text{ cm}$$

(ii) Area of the sector formed by the arc:

Area of minor sector =
$$\frac{\theta}{360}\pi r^2$$

= $\frac{60}{360} \times \frac{22}{7} \times 21 \times 21$ = **231** cm²

2m

3m

The length of the minute hand of a clock is 14 cm. Find the area swept by the minute 3m hand in 5 minutes.

OR

A:- Here
$$\theta = \frac{360^{\circ}}{60 \text{ m}} \times 5 \text{ m} = 30^{\circ} \dots [\because 1 \text{ hour} = 60 \text{ minutes}]$$

 $r(\text{radius}) = 14 \text{ cm}$ Im
 \therefore Required area $= \frac{\theta}{360} \pi r^2$ Im
 $= \frac{30}{360} \times \frac{22}{7} \times 14 \times 14$
 $= \frac{154}{3} \text{ cm}^2 \text{ or } 51.\overline{3} \text{ cm}^2$ 2m

Class	Frequency
0-20	17
20-40	p p
40-60	32
60-80	24
80-100	19

31 If the mean of the following distribution is 50, find the value of p.

A:-	Class	Frequency		f _i X _i			
		(7)	ALC: NO.	170			
	0-20	17	10	170			
	40-60	32	50	1600			
	60-80	24	70	1680			
	80-100	19	90	1710			
		$\Sigma f_i = 92 + p$		$\Sigma f_i X_i = 5160 + 30p$		2m	
	$\therefore \text{Mean}$ $50 = \frac{5}{4600} + \frac{5}{50p - 3}$	$= \frac{\sum f_i X_i}{\sum f_i}$ 5160 + 30p 92 + p - 50p = 5160 30p = 5160 -	+ 30 <i>p</i> 4600				
	$\Rightarrow 20p =$ $\Rightarrow p = \frac{56}{20}$	$\frac{560}{20} = 28$		= 28			
	$\rightarrow P_{2}$	0 20	<i>p</i>	C		1m	
32	The sum	of the are	as of two	<u>s</u> souares i	$\frac{500000}{5468}$ M $\frac{100000}{1000}$ Heir perimeters differ from 24 m.	5m	
	find the s	ides of the	e two sau	ares	····· ···· ····· ····· ····· ····· ·····	•	
٨٠	Sum of the	a grada of t		160.002			
A	$\therefore x^2 + y^2 =$	468(1) [:: area c	of sauare =	side ²]		
	\rightarrow The diff	erence of t = 24 [·· Peri	heir perime imeter of so	eters is 24 m nuare = 4 x	side $\rightarrow A(x - y) = 24$		
	$\Rightarrow x - y = 2$	24/4		10010 - 4	$\operatorname{Side}_{J} \rightarrow \operatorname{F}(X \times Y) = 24$		
	$\Rightarrow x - y = 0$	6					
	$\therefore y = x - 6$	i(2)				2m	
	, From equ	ation (1) an	d (2),			2111	
	∵ x² + (x -	$(-6)^2 = 468$					
	$\Rightarrow x^2 + x^2 -$	12x + 36 = 12x + 36	468				
	$\Rightarrow 2x^2 - 12y$	x + 36 - 468	3 = 0				
	$\rightarrow 2x^2 - 12x^2$	x - 432 = 0					
	$\rightarrow 2/\sqrt{12}$	x = 216) =	0				
	$\rightarrow 2(x + 0)$	- 216 - 0	0				
	$\Rightarrow x^2 - 0x^2$	-210 - 0	- 0				
	$\Rightarrow x^2 - 18x$	+ 12x - 210	= 0				
	$\Rightarrow X(X - 18)$	(x - 12)	18)=0				
	$\Rightarrow (x + 12)$) (x - 18) =	: 0				
	$\Rightarrow x + 12 =$	0 ana x - 18	8 = 0				
	$\Rightarrow x = -12i$	m [rejected	d] and x =	18m		2m	
	∴ x = 18 m			- >			
	Put the va	lue of 'x' in	equation (2	2),			
	∵ y = x – 6	5					
	⇒ y = 18 -	6					
	∴ y = 12 m					lm	
					OR		
	Solve the	following	g quadrati	ic equatio	n for x: $9x^2 - 6b^2x - (a^4 - b^4) = 0$		
A:-	The given q	juadratic equ	uation can b	e written as			
	(9x ² - 6b ² x	$(+b^4) - a^4 =$	0				
	\Rightarrow (3x - b ²)	$(a^2)^2 = 0$					
	$\Rightarrow (3x - b^{2} + a^{2}) (3x - b^{2} - a^{2}) = 0 \dots [:: x^{2} - y^{2} = (x + y) (x - y)$						
	$\Rightarrow 3x - b^2 + a^2 = 0 \text{ or } 3x - b^2 - a^2 = 0$						
	$\Rightarrow 3x = b^2 - a^2 \text{ or } 3x = b^2 + a^2$						
	$\Rightarrow x = \frac{b^2 - a^2}{a^2} \qquad \qquad x = \frac{b^2 + a^2}{a^2}$						
		3		3		_	
	$\Rightarrow x = -$	$\frac{b^2 - a^2}{3}, \frac{b^2}{3}$	$\frac{+a^2}{3}$			2m	

33 The angles of depression of two ships from the top of a lighthouse and on the same 5m side of it are found to be 45° and 30°. If the ships are 200 m apart, find the height of the lighthouse.

2m

3m

OR

Two poles of equal heights are standing opposite to each other on either side of the road, which is 100 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of the poles.

A:-

Δ.

A:-

2m

1m

2m

34 A round table cover has six equal designs as shown in Figure If the radius of the cover is 28 cm, find the cost of making the designs at the rate of Rs. 0.35 per cm². (Use $\sqrt{3} = 1.7$)

5m

A:-	Designs are segments of circle. Consider segment APB. Chord AB is a side of hexagon. Each chord will	
	substitute $\frac{360^{\circ}}{6}$ = 60° at centre of circle.	
	In $\triangle OAB$ $\angle OAB = \angle OBA$ (as $OA = OB$) $\angle AOB = 60^{\circ}$ $\angle OAB + \angle OBA + \angle AOB = 180^{\circ}$ $\angle \angle OAB = 180^{\circ} - 60^{\circ} = 120^{\circ}$ $\angle OAB = 60^{\circ}$	1m
	So ΔOAB is an equilateral triangle	1111
	Area of $\triangle OAB = \frac{\sqrt{3}}{4} \times (side)^2$	
	$=\frac{\sqrt{3}}{4} \times (28)^2 = 196\sqrt{3} \text{ cm}^2 = 333.2 \text{ cm}^2.$	
	Area of sector OAPB = $\frac{60^{\circ}}{360^{\circ}} \times \pi r^2$	1m
	$=\frac{1}{6}\times\frac{22}{7}\times28\times28$	
	$=\frac{1232}{3}=410.6667\mathrm{cm}^2$	1m
	Area of segment APB = Area of sector OAPB - Area of $\triangle OAB$ = 410.6667 - 333.2 = 77.4667 cm ²	
	So, area of designs = $6 \times 77.46 = 464.8 \text{ cm}^2$	
	Cost occurred in making 1 cm² designs = Rs.U.35 Cost occurred in making 464.8 cm² designs = 464.8 x 0.35 = 162.68 So, cost of making such designs is Rs.162.68.	2m
35	Find the values of x and y if the median for the following data is 31.	5m
	Class State Frankright	

Sec. 4	Class	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Frequency
	0-10		5
	10-20		x
	20-30		6
	30-40		V V
	40-50		6
	50-60		5
	Total		40

36 Alia and Shagun are friends living on the same street in Patel Nagar. Shagun's house 4m is at the intersection of one street with another street on which there is a library. They both study in the same school and that is not far from Shagun's house. Suppose the school is situated at the point 0, i.e., the origin, Alia's house is at A. Shagun's house is at B and the library is at C. Based on the above information, answer the following questions.

1. How far is Alia's house from Shagun's house?

- 2. How far is the library from Shagun's house?
- 3. How far is the library from Alia's house? Or How far is Shagun's house from school?

A:- 1. 2 units 2. 2 units 3. 2√2 units or square root of 5 CL_X_MID_TERM_MATHS_MS_Page 10 | 11

37	The owner of a taxi company decides to run all the taxis on CNG fuel instead of	4m
	petrol/diesel. The taxi charges in the city are comprised of fixed charges together	
	with the charge for the distance covered. For a journey of 12 km, the charge paid is	
	Rs. 89; for a journey of 20 km, the charge is Rs.145.	
	1. What are the equations formed for both conditions?	2m
	2. What will a person have to pay for travelling a distance of 30 km?	1m
	3. Why did he decide to use CNG for his taxi as fuel?	1m
A:-	1.x + 12y = 89	2m
	x + 20y = 145	
	2.215	1m
	3. Environment friendly.	1m

38 Accumulating plastics in the environment creates problems for wildlife, their 4m habitats, and humans. Plastics are a threat to the environment. The children of Avantipur decided that they would contribute their service to end the usage of plastics in their village. They fixed posters and hoisted placards depicting plastics' ill effects on human health and the environment. They started their work in June 1 5 t h They started collecting the thrown-off plastic bottles in their locality and started counting them. To their astonishment, they found that the number of plastic bottles that they collected each day was in Arithmetic Progression which went like this: 417,404,391,

	1. What is the common difference?	1m
	2. How many bottles did they collect on June 25th?	1m
	3. The children of Avantipur wanted to make their village a plastic-free zone.	2m
	Identify the day on which they got 1 bottle which was their dream day.	
A:-	1.d = -13	1m
	2.287	1m
	3. July 17 th	2m
	-	

###